Sains Malaysiana 52(11)(2023): 3261-3271
http://doi.org/10.17576/jsm-2023-5211-18
Effect of Sn Plating
Thickness on Wettability, Solderability, and
Electrical Connections of Electronic Lead Connectors for Surface Mount
Technology Applications
(Kesan Ketebalan Saduran Sn terhadap Kebolehbasahan, Kebolehpaterian dan Sambungan Elektrik bagi Kaki Penyambung Elektronik untuk Aplikasi Teknologi Lekapan Permukaan)
MARIA ABU BAKAR1,*,
MOHAMAD SOLEHIN MOHAMED SUNAR1,2, AZMAN JALAR1,3, A
ATIQAH1, FAKHROZI CHE ANI2, IBRAHYM AHMAD2 & ZOL EFFENDI ZOLKEFLI2
1Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Western Digital®,
SanDisk Storage Malaysia Sdn. Bhd. Plot 301A, Persiaran Cassia Selatan 1, Taman Perindustrian Batu Kawan, MK13, Batu Kawan, Seberang Perai Selatan, 14100, Penang, Malaysia
3Department
of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
Received:
1 August 2023/Accepted: 19 October 2023
Abstract
The wettability of solder is important to achieve
good solderability between the electronic component
and printed circuit board (PCB). Tin (Sn) plating is widely used to promote the
wettability of the solder on the substrates. However, an adequate amount of Sn
plating thickness must be taken into consideration to acquire good wettability
and solderability. Thus, this study investigates the
Sn plating thickness of the electronic lead connector and their effect on the
wettability and electrical connection. Two types of Sn plating thicknesses, ~3 μm, and 5 μm were
applied on the electronic lead connector surface. It was found that the thin Sn
plating thickness of ~3 μm has shown failure in
electrical connections and lack of solder joint wettability and solderability properties. A thicker Sn plating thickness of
5 μm, has shown better wettability and solderability properties. In addition, the electrical
connections also passed which implies that the thicker Sn plating thickness
provides good solder joint establishment leading to good electrical
connections. It is also observed that the better wettability of solder has been
achieved for thicker Sn plating thickness. The finding from the field emission
scanning electron microscope (FESEM) shows that the intermetallic compound
(IMC) layer growth in the lead connector surface is regarded as abnormal for
thin Sn plating thickness (~3 μm), in which the
IMC layer was consumed and penetrating up to the surface of Sn-coating. This has led to poor solderability of the thin Sn plating with the solder to establish solder joint. The findings
from this study have shed some light upon a better understanding of the
importance of considering the adequate amount of Sn coating thickness to avoid
IMC consumption at the Sn plating, better wettability properties, solderability, and solder joint quality for surface mount
technology (SMT) especially for electronic lead connector applications.
Keywords: Electronic lead connector;
IMC consumed at Sn plating; Sn plating thickness; solderability;
surface mount technology; wettability
Abstrak
Kebolehbasahan pateri adalah penting untuk mencapai kebolehpaterian yang baik antara komponen elektronik dan papan litar bercetak (PCB). Saduran timah (Sn) digunakan secara meluas untuk menggalakkan kebolehbasahan pateri pada substrat. Walau bagaimanapun, ketebalan saduran Sn yang mencukupi harus diambil kira untuk memperoleh kebolehbasahan dan kebolehpaterian yang baik. Oleh itu, penyelidikan ini mengkaji ketebalan saduran Sn pada kaki penyambung elektronik dan kesannya terhadap kebolehbasahan dan sambungan elektrik. Dua jenis ketebalan saduran Sn, ~3 μm, dan 5 μm diaplikasikan pada permukaan kaki penyambung elektronik. Didapati bahawa saduran Sn yang nipis, ~3 μm telah menunjukkan kegagalan sambungan elektrik dan kekurangan dari segi sifat kebolehbasahan dan kebolehpaterian sambungan pateri. Saduran Sn yang tebal, 5 μm menunjukkan sifat kebolehbasahan dan kebolehpaterian yang lebih baik. Di samping itu, sambungan elektrik yang lulus menunjukkan bahawa ketebalan saduran Sn yang tebal menghasilkan sambungan pateri yang baik seterusnya memberikan sambungan elektrik yang baik. Turut diperhatikan bahawa kebolehbasahan pateri yang baik dicapai untuk saduran Sn yang tebal. Keputusan mikroskop elektron imbasan medan pancaran (FESEM) juga menunjukkan bahawa pertumbuhan lapisan sebatian antara logam (IMC) pada permukaan kaki penyambung dengan saduran Sn nipis (~3 μm) adalah tidak normal, yang mana lapisan IMC telah memakan dan menembusi ke permukaan saduran Sn. Ini mengakibatkan kebolehpaterian yang lemah antara pateri dan saduran Sn nipis untuk menghasilkan sambungan pateri. Penemuan daripada kajian ini telah memberikan pencerahan dan pemahaman yang lebih baik tentang kepentingan untuk mengambil kira ketebalan saduran Sn yang mencukupi bagi mengelakkan IMC memakan saduran Sn, sifat kebolehbasahan, kebolehpaterian dan kualiti sambungan pateri yang baik bagi teknologi lekapan permukaan (SMT) khususnya bagi aplikasi kaki penyambung elektronik.
Kata kunci: IMC memakan saduran Sn; kaki penyambung elektronik; kebolehbasahan; kebolehpaterian; ketebalan saduran Sn; teknologi lekapan permukaan
REFERENCES
Afdzaluddin, A.M. & Bakar, M.A. 2020.
Effect of coating element on joining stability of Sn-0.3 Ag-0.7 Cu solder joint
due to aging test. Sains Malaysiana 49(12): 2983-2990.
Akkara, F.J., Abueed,
M., Belhadi, M., Wei, X., Hamasha,
S., Ali, H., Suhling, J. & Lall,
P. 2020. Reliability of new SAC-Bi solder alloys in thermal cycling with aging. Proc. IPC APEX pp. 1-8.
Ashworth, M.A., Wilcox, G.D., Higginson, R.L., Heathm R.J.,
Liu, C. & Mortimer, R.J. 2015. The effect of electroplating parameters and
substrate material on tin whisker formation. Microelectronics Reliability 55: 180-191.
Atiqah, A., Jalar, A., Bakar, M.A. & Ismail, N. 2022.
Advancement of Printed Circuit Board (PCB) surface finishes in controlling the
Intermetallic Compound (IMC) growth in solder joints, In Recent Progress in
Lead-Free Solder Technology. Topics in Mining, Metallurgy and Materials
Engineering, edited by Salleh, M.A.A.M., Abdul Aziz, M.S., Jalar, A. &
Izwan Ramli, M.I. Springer, Cham. pp. 217-238.
Chen, C.,
Zhang, L., Wang, X., Lu, X. & Guo, Y.H. 2023.
Microstructure and properties of Sn58Bi/Ni solder joint modified by Mg
particles. Journal of Materials Research and Technology 24: 514-526.
Curtulo, J.P., Dias, M., Bertelli, F., Silva, B.L., Spinelli,
J.E., Garcia, A. & Cheung, N. 2019. The application of an analytical model
to solve an inverse heat conduction problem: Transient solidification of a
Sn-Sb peritectic solder alloy on distinct substrates. Journal of Manufacturing Processes 48: 164-173.
Dušek, K., Vávra,
J. & Rudajevová, A. 2013. Effect of reflow
technology and surface finishes of PCB on solder spreading. Proc. 36th Int.
Spring Semin. Electron. Technol., IEEE. pp.
136-139.
Esfahani, R.N., Shuttleworth,
M.P., Doychinov, V., Wilkinson, N.J., Hinton, J.,
Jones, T.D.A., Ryspayeva, A., Robertson, I.D.,
Marques-Hueso, J. & Desmulliez,
M.P.Y. 2020. Light based synthesis of metallic nanoparticles on
surface-modified 3D printed substrates for high performance electronic systems. Additive Manufacturing 34: 101367.
Fazal, M.A., Liyana,
N.K., Rubaiee, S. & Anas,
A. 2019. A critical review on performance, microstructure and corrosion
resistance of Pb-free solders. Measurement 134:
897-907.
Gui, Z., Hu, X., Jiang, X., Li, Y.
& Wang, H. 2021. Interfacial reaction, wettability, and shear strength of
ultrasonic-assisted lead-free solder joints prepared using Cu–GNSs-doped flux. Journal
of Materials Science: Materials in Electronics 32: 24507-24523.
Hillman, D., Pearson, T., Wilcoxon, R., Cooke, G., Margheim,
S., Gladen, E., Munson, T. & Fritz, D. 2023. The Influence of element lead
(Pb) content in tin plating on tin whisker initiation/growth. Journal of
Surface Mount Technology 36: 2-11.
Huan, P-C., Tang, X-X., Sun, Q., Akira, K., Wang, X-N., Wang,
J., Wang, J-L., Wei, X. & Di, H-S. Comparative study of solder wettability
on aluminum substrate and microstructure-properties of Cu-based
component/aluminum laser soldering joint. Materials & Design 215: 110485.
Hussein,
M.A., Suryanarayana, C. & Al-Aqeeli,
N. 2015. Fabrication of nano-grained Ti–Nb–Zr biomaterials using spark plasma sintering. Materials & Design 87:
693-700.
Ismail,
N., Atiqah, A., Jalar, A.,
Bakar, M.A., Rahim, R.A.A., Ismail, A.G., Hamzah,
A.A. & Keng, L.K. 2022. A systematic literature
review: The effects of surface roughness on the wettability and formation of
intermetallic compound layers in lead-free solder joints. Journal of
Manufacturing Processes 83: 68-85.
Ismail, N., Bakar,
M.A. & Bakarudin, S.B. 2020. Effect of
temperature on strain-induced hardness of lead-free solder wire using
nanoindentation approach. Sains Malaysiana 49(12): 3073-3080.
Ismail,
N., Jalar, A., Yusoff, W.Y.W., Safee, N.S. & Ismail, A. 2020. Effect of shock wave on
constant load behaviour of Pb-Free/CNT solder joint. Sains Malaysiana 49(12): 3037-3044.
Jayasekara, H., Zhang, Q., Yuen, C., Zhang,
M., Woo, C.W. & Low, J. 2023. Detecting anomalous solder joints in
multi-sliced PCB X-ray images: A deep learning based approach. SN Computer
Science 4: 307.
Jia, F., Niu,
L., Xi, Y., Qiu, Y., Ma, H. & Yang, C. 2023.
Experimental and multiphysics simulation study of
atoms migration and morphology evolution in solder joints under high current
density. International Journal of Heat and Mass Transfer 202: 123719.
Jung,
D-H. & Jung, J-P. 2019. Review of the wettability of solder with a wetting
balance test for recent advanced microelectronic packaging. Critical Reviews
in Solid State and Materials Sciences 44: 324-343.
Khazaka, R., Martineau, D., Youssef, T.,
Le, T.L. & Azzopardi, S. 2019. Rapid and localized soldering using reactive
films for electronic applications. Journal of Microelectronics and
Electronic Packaging 16: 182-187.
Liu,
C.Y., Li, J., Vandentop, G.J., Choi, W.J. & Tu, K-N. 2001. Wetting reaction of Sn-Ag based solder
systems on Cu substrates plated with Au and/or Pd layer. Journal of Electronic Materials 30: 521-525.
Mohamed Sunar, M.S., Abu Bakar, M., Jalar,
A., Ramli, M.R. & Che Ani, F. 2022. Effect of alloy particle size and stencil aperture shape on
solder printing quality. Microelectronics International 39(2): 81-90.
Podsiadły, B., Skalski,
A. & Słoma, M. 2021. Soldering of
electronics components on 3D-printed conductive substrates. Materials
(Basel) 14: 3850.
Rahim,
R.A.A.A., Zulkifli, M.N., Jalar,
A., Afdzaluddin, A.M. & Shyong,
K.S. 2020. Effect of isothermal aging and copper substrate roughness on the
SAC305 solder joint intermetallic layer growth of high temperature storage
(HTS). Sains Malaysiana 49(12): 3045-3054.
Ramli, M.I.I., Mohd Salleh, M.A.A., Amli, S.F.M. & Razak, N.R.A. 2020. Effect of bismuth additions on
wettability, intermetallic compound, and microhardness properties of Sn-0.7 Cu
on different surface finish substrates. Sains Malaysiana 49(12):
3201-3205.
Ramli, M.I.I., Mohd Salleh, M.A.A., Mohd Sobri, F.A., Narayanan, P., Sweatman,
K. & Nogita, K. 2019. Relationship between free
solder thickness to the solderability of Sn–0.7
Cu–0.05 Ni solder coating during soldering. Journal of Materials Science:
Materials in Electronics 30: 3669-3677.
Reddy,
V.V.B., Gupta, S., Williamson, J. & Sitaraman,
S.K. 2022. Correlation studies between laser ultrasonic inspection data and
finite-element modeling results in evaluation of solder joint quality in
microelectronic packages. Journal of Electronic Packaging 144: 11009.
Said, M., Salleh, N.A., Nazeri,
M.F.M., Akbulut, H., Kheawhom,
S. & Mohamad, A.A. 2023. Microwave hybrid heating for lead-free solder: A
review. Journal of Materials Research and Technology 26: 6220-6243.
Schetty, R. 2001. Minimization of tin whisker formation for
lead‐free electronics finishing. Circuit World 27: 17-20.
Soares, T., Cruz, C., Silva, B., Brito,
C., Garcia, A., Spinelli, J.E. & Cheung, N. 2020.
Interplay of wettability, interfacial reaction and interfacial thermal
conductance in Sn-0.7 Cu solder alloy/substrate couples. Journal of
Electronic Materials 49: 173-187.
Song, Q.,
Li, Y., Yu, J., Qi, D., Qin, W. & Zhan, Y. 2022. Effect of Ni and TiO2
particle addition on the wettability and interfacial reaction of Sn20Bi
lead-free solder. Journal of Materials Science: Materials in Electronics 33: 3306-3319.
Veselý, P., Bušek,
D., Krammer, O. & Dušek,
K. 2020. Analysis of no-clean flux spatter during the soldering process. Journal
of Materials Processing Technology 275: 116289.
Walsh, F.C. & Low, C.T.J. 2016. A review of developments in the electrodeposition of tin. Surface
and Coatings Technology 288: 79-94.
Wang, H.,
Hu, X., Jiang, X. & Li, Y. 2021. Interfacial reaction and shear strength of
ultrasonically-assisted Sn-Ag-Cu solder joint using composite flux. Journal
of Manufacturing Processes 62: 291-301.
Waseem, A., Ibrahim, M.S., Lu, C., Waseem, M., Lee, H.H. & Loo, K.H. 2023. The effect of
pre-existing voids on solder reliability at different thermomechanical stress
levels: Experimental assessment. Materials & Design 233: 112275.
Yuan, P.,
Chen, D., Qin, J., Bai, H., Zhang, X., Gan, G., Leng, C. & Yan, J. 2023. Effects of Ag3Sn nanoparticles
and isothermal aging on IMC layer growth, mechanical properties, and life
prediction of SAC305/Cu solder joints. Composites and Advanced Materials 32.
Yue, W.,
Zhang, J-X., Gong, C-G., Zhou, M-B. & Zhang, X-P. 2019. Identification of
essential factors causing solder bridging of right-angle solder interconnects
in laser jet solder ball bonding process. 20th International Conference on
Electronic Packaging IEEE. pp. 1-4.
Yusoff, F.A.M., Bakar, M.A. & Jalar, A. 2022. Kesan rawatan termomekanik dengan mampatan tunggal terhadap mikrostruktur dan sifat mikromekanik aloi pateri Sn-0.7Cu. Sains Malaysiana 51(11): 3775-3784.
Zhao,
P.J., Chen, Z.H. & Dong, C.F. 2014. Failure analysis of warm stamping of
magnesium alloy sheet based on an anisotropic damage model. Journal of
Materials Engineering and Performance 23: 4032-4041.
Zhao, S.,
Tan, Z., Wang, H. & Gao, M. 2022. Effects of spreading behaviors on dynamic
reflectivity in laser soldering. Optics & Laser Technology 155:
108404.
*Corresponding
author; email: maria@ukm.edu.my
|